"Found 2000 validated image filenames belonging to 1 classes.\n"
]
},
{
"data": {
"text/plain": [
"\"\\n# Erstellen eines ImageDataGenerator-Objekts, um Bilder direkt aus dem class_A_dir einzulesen\\nclass_A_generator = datagen.flow_from_directory(\\n class_A_dir,\\n target_size=(SIZE, SIZE), # Größe der Eingabebilder, wird für viele Modelle verwendet\\n batch_size=batch_size, # Anzahl der Bilder pro Batch\\n class_mode='categorical', # 'categorical' für Klassifikation, 'binary' für binäre Klassifikation, None für nicht-klassifizierte Daten\\n shuffle=True # Optionales Shuffling der Bilder in der Datenquelle\\n)\\n\\n\\n\\ntrain_generator = datagen.flow_from_directory(\\n 'data/cell_images/uninfected_train/',\\n target_size=(SIZE, SIZE),\\n batch_size=batch_size,\\n class_mode='input'\\n )\\n\\nvalidation_generator = datagen.flow_from_directory(\\n 'data/cell_images/uninfected_test/',\\n target_size=(SIZE, SIZE),\\n batch_size=batch_size,\\n class_mode='input'\\n )\\n\\nanomaly_generator = datagen.flow_from_directory(\\n 'data/cell_images/parasitized/',\\n target_size=(SIZE, SIZE),\\n batch_size=batch_size,\\n class_mode='input'\\n )\\n\""
"ename": "FileNotFoundError",
"evalue": "[WinError 3] Das System kann den angegebenen Pfad nicht finden: 'data/cell_images/uninfected_train'",
"Cell \u001b[1;32mIn[2], line 14\u001b[0m\n\u001b[0;32m 12\u001b[0m src_path_train \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mdata/cell_images/uninfected_train\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 13\u001b[0m \u001b[39m# Liste der Dateinamen im Ordner\u001b[39;00m\n\u001b[1;32m---> 14\u001b[0m file_list_train \u001b[39m=\u001b[39m os\u001b[39m.\u001b[39;49mlistdir(src_path_train)\n\u001b[0;32m 15\u001b[0m \u001b[39m# Liste der Labels (Klassen) für die Bilder\u001b[39;00m\n\u001b[0;32m 16\u001b[0m labels_train \u001b[39m=\u001b[39m [\u001b[39m'\u001b[39m\u001b[39muninfected_train\u001b[39m\u001b[39m'\u001b[39m] \u001b[39m*\u001b[39m \u001b[39mlen\u001b[39m(file_list_train) \u001b[39m# Bilder im Ordner werden Klasse \"uninfected_train\" zugeordnet\u001b[39;00m\n",
"\u001b[1;31mFileNotFoundError\u001b[0m: [WinError 3] Das System kann den angegebenen Pfad nicht finden: 'data/cell_images/uninfected_train'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
...
...
@@ -64,18 +58,13 @@
"# Size of ba\n",
"batch_size = 64\n",
"\n",
"\n",
"\n",
"\n",
"# Pfad zum Ordner, der nur Bilder der Klasse A enthält\n",
Found 2000 validated image filenames belonging to 1 classes.
"\n# Erstellen eines ImageDataGenerator-Objekts, um Bilder direkt aus dem class_A_dir einzulesen\nclass_A_generator = datagen.flow_from_directory(\n class_A_dir,\n target_size=(SIZE, SIZE), # Größe der Eingabebilder, wird für viele Modelle verwendet\n batch_size=batch_size, # Anzahl der Bilder pro Batch\n class_mode='categorical', # 'categorical' für Klassifikation, 'binary' für binäre Klassifikation, None für nicht-klassifizierte Daten\n shuffle=True # Optionales Shuffling der Bilder in der Datenquelle\n)\n\n\n\ntrain_generator = datagen.flow_from_directory(\n 'data/cell_images/uninfected_train/',\n target_size=(SIZE, SIZE),\n batch_size=batch_size,\n class_mode='input'\n )\n\nvalidation_generator = datagen.flow_from_directory(\n 'data/cell_images/uninfected_test/',\n target_size=(SIZE, SIZE),\n batch_size=batch_size,\n class_mode='input'\n )\n\nanomaly_generator = datagen.flow_from_directory(\n 'data/cell_images/parasitized/',\n target_size=(SIZE, SIZE),\n batch_size=batch_size,\n class_mode='input'\n )\n"
37 #plot the training and validation accuracy and loss at each epoch
38 loss = history.history['loss']
File d:\Studium\Masterarbeit\Einarbeitung\Codebeispiele\detecting_anomalies\.venv\Lib\site-packages\keras\src\utils\traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs)
---> 70 raise e.with_traceback(filtered_tb) from None
71 finally:
72 del filtered_tb
File d:\Studium\Masterarbeit\Einarbeitung\Codebeispiele\detecting_anomalies\.venv\Lib\site-packages\keras\src\preprocessing\image.py:103, in Iterator.__getitem__(self, idx)