Found 2000 validated image filenames belonging to 1 classes.
Found 2000 validated image filenames belonging to 1 classes.
"\n# Erstellen eines ImageDataGenerator-Objekts, um Bilder direkt aus dem class_A_dir einzulesen\nclass_A_generator = datagen.flow_from_directory(\n class_A_dir,\n target_size=(SIZE, SIZE), # Größe der Eingabebilder, wird für viele Modelle verwendet\n batch_size=batch_size, # Anzahl der Bilder pro Batch\n class_mode='categorical', # 'categorical' für Klassifikation, 'binary' für binäre Klassifikation, None für nicht-klassifizierte Daten\n shuffle=True # Optionales Shuffling der Bilder in der Datenquelle\n)\n\n\n\ntrain_generator = datagen.flow_from_directory(\n 'data/cell_images/uninfected_train/',\n target_size=(SIZE, SIZE),\n batch_size=batch_size,\n class_mode='input'\n )\n\nvalidation_generator = datagen.flow_from_directory(\n 'data/cell_images/uninfected_test/',\n target_size=(SIZE, SIZE),\n batch_size=batch_size,\n class_mode='input'\n )\n\nanomaly_generator = datagen.flow_from_directory(\n 'data/cell_images/parasitized/',\n target_size=(SIZE, SIZE),\n batch_size=batch_size,\n class_mode='input'\n )\n"
"\n# Erstellen eines ImageDataGenerator-Objekts, um Bilder direkt aus dem class_A_dir einzulesen\nclass_A_generator = datagen.flow_from_directory(\n class_A_dir,\n target_size=(SIZE, SIZE), # Größe der Eingabebilder, wird für viele Modelle verwendet\n batch_size=batch_size, # Anzahl der Bilder pro Batch\n class_mode='categorical', # 'categorical' für Klassifikation, 'binary' für binäre Klassifikation, None für nicht-klassifizierte Daten\n shuffle=True # Optionales Shuffling der Bilder in der Datenquelle\n)\n\n\n\ntrain_generator = datagen.flow_from_directory(\n 'data/cell_images/uninfected_train/',\n target_size=(SIZE, SIZE),\n batch_size=batch_size,\n class_mode='input'\n )\n\nvalidation_generator = datagen.flow_from_directory(\n 'data/cell_images/uninfected_test/',\n target_size=(SIZE, SIZE),\n batch_size=batch_size,\n class_mode='input'\n )\n\nanomaly_generator = datagen.flow_from_directory(\n 'data/cell_images/parasitized/',\n target_size=(SIZE, SIZE),\n batch_size=batch_size,\n class_mode='input'\n )\n"
%% Cell type:code id: tags:
%% Cell type:code id: tags:
``` python
``` python
#Define the autoencoder.
#Define the autoencoder.
#Try to make the bottleneck layer size as small as possible to make it easy for
#Try to make the bottleneck layer size as small as possible to make it easy for
#density calculations and also picking appropriate thresholds.
#density calculations and also picking appropriate thresholds.
37 #plot the training and validation accuracy and loss at each epoch
37 #plot the training and validation accuracy and loss at each epoch
38 loss = history.history['loss']
38 loss = history.history['loss']
File d:\Studium\Masterarbeit\Einarbeitung\Codebeispiele\detecting_anomalies\.venv\Lib\site-packages\keras\src\utils\traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs)
File d:\Studium\Masterarbeit\Einarbeitung\Codebeispiele\detecting_anomalies\.venv\Lib\site-packages\keras\src\utils\traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs)
---> 70 raise e.with_traceback(filtered_tb) from None
---> 70 raise e.with_traceback(filtered_tb) from None
71 finally:
71 finally:
72 del filtered_tb
72 del filtered_tb
File d:\Studium\Masterarbeit\Einarbeitung\Codebeispiele\detecting_anomalies\.venv\Lib\site-packages\keras\src\preprocessing\image.py:103, in Iterator.__getitem__(self, idx)
File d:\Studium\Masterarbeit\Einarbeitung\Codebeispiele\detecting_anomalies\.venv\Lib\site-packages\keras\src\preprocessing\image.py:103, in Iterator.__getitem__(self, idx)