Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DetectingAnomalies
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Paul G
DetectingAnomalies
Commits
c1617a74
Commit
c1617a74
authored
1 year ago
by
Paul G
Browse files
Options
Downloads
Patches
Plain Diff
entfernt
parent
0c546e47
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
backup.ipynb
+0
-93
0 additions, 93 deletions
backup.ipynb
with
0 additions
and
93 deletions
backup.ipynb
deleted
100644 → 0
+
0
−
93
View file @
0c546e47
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"###########################################################################\n",
"# ImageGenerator with dataframes\n",
"###########################################################################\n",
"\n",
"#Size of our input images\n",
"SIZE = 128\n",
"# Size of ba\n",
"batch_size = 64\n",
"\n",
"# Pfad zum Ordner, der nur Bilder der Klasse A enthält\n",
"src_path = \"data/cell_images\"\n",
"\n",
"\n",
"# Klasse \"uninfected_train\"\n",
"# Pfad zum Ordner mit den Bildern\n",
"src_path_train = \"data/cell_images/uninfected_train\"\n",
"# Liste der Dateinamen im Ordner\n",
"file_list_train = os.listdir(src_path_train)\n",
"# Liste der Labels (Klassen) für die Bilder\n",
"labels_train = ['uninfected_train'] * len(file_list_train) # Bilder im Ordner werden Klasse \"uninfected_train\" zugeordnet\n",
"# Erstellen eines DataFrames mit Dateinamen und den entsprechenden Labels\n",
"df_data_train = pd.DataFrame({'filename': file_list_train, 'label': labels_train})\n",
"\n",
"# Klasse \"uninfected_test\"\n",
"src_path_test = \"data/cell_images/uninfected_test\"\n",
"file_list_test = os.listdir(src_path_test)\n",
"labels_test = ['uninfected_test'] * len(file_list_test)\n",
"df_data_test = pd.DataFrame({'filename': file_list_test, 'label': labels_test})\n",
"\n",
"# Klasse \"parasitized\"\n",
"src_path_parasitized = \"data/cell_images/parasitized\"\n",
"file_list_parasitized = os.listdir(src_path_parasitized)\n",
"labels_parasitized = ['parasitized'] * len(file_list_parasitized)\n",
"df_data_parasitized = pd.DataFrame({'filename': file_list_parasitized, 'label': labels_parasitized})\n",
"\n",
"\n",
"#Define generators for training, validation and also anomaly data\n",
"# Konfigurieren des ImageDataGenerator für das Rescaling der Pixelwerte\n",
"datagen = ImageDataGenerator(rescale=1./255)\n",
"\n",
"# Erstellen eines ImageDataGenerator-Objekts, um Bilder und Labels zu laden, Klasse \"df_data_train\"\n",
"train_generator = datagen.flow_from_dataframe(\n",
" df_data_train,\n",
" src_path_train, # Verzeichnis, das die Bilder enthält\n",
" x_col='filename', # Name der Spalte im DataFrame, die die Dateinamen enthält\n",
" y_col='label', # Name der Spalte im DataFrame, die die Labels enthält\n",
" target_size=(SIZE, SIZE), # Größe der Eingabebilder\n",
" batch_size=batch_size, # Anzahl der Bilder pro Batch\n",
" class_mode='categorical', # 'categorical' für Klassifikation, 'binary' für binäre Klassifikation\n",
" shuffle=True\n",
")\n",
"\n",
"validation_generator = datagen.flow_from_dataframe(\n",
" df_data_test,\n",
" src_path_test,\n",
" x_col='filename',\n",
" y_col='label',\n",
" target_size=(SIZE, SIZE),\n",
" batch_size=batch_size,\n",
" class_mode='categorical',\n",
" shuffle=True\n",
")\n",
"\n",
"anomaly_generator = datagen.flow_from_dataframe(\n",
" df_data_parasitized,\n",
" src_path_parasitized,\n",
" x_col='filename',\n",
" y_col='label',\n",
" target_size=(SIZE, SIZE),\n",
" batch_size=batch_size,\n",
" class_mode='categorical',\n",
" shuffle=True\n",
")"
]
}
],
"metadata": {
"language_info": {
"name": "python"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
%% Cell type:code id: tags:
```
###########################################################################
# ImageGenerator with dataframes
###########################################################################
#Size of our input images
SIZE = 128
# Size of ba
batch_size = 64
# Pfad zum Ordner, der nur Bilder der Klasse A enthält
src_path = "data/cell_images"
# Klasse "uninfected_train"
# Pfad zum Ordner mit den Bildern
src_path_train = "data/cell_images/uninfected_train"
# Liste der Dateinamen im Ordner
file_list_train = os.listdir(src_path_train)
# Liste der Labels (Klassen) für die Bilder
labels_train = ['uninfected_train'] * len(file_list_train) # Bilder im Ordner werden Klasse "uninfected_train" zugeordnet
# Erstellen eines DataFrames mit Dateinamen und den entsprechenden Labels
df_data_train = pd.DataFrame({'filename': file_list_train, 'label': labels_train})
# Klasse "uninfected_test"
src_path_test = "data/cell_images/uninfected_test"
file_list_test = os.listdir(src_path_test)
labels_test = ['uninfected_test'] * len(file_list_test)
df_data_test = pd.DataFrame({'filename': file_list_test, 'label': labels_test})
# Klasse "parasitized"
src_path_parasitized = "data/cell_images/parasitized"
file_list_parasitized = os.listdir(src_path_parasitized)
labels_parasitized = ['parasitized'] * len(file_list_parasitized)
df_data_parasitized = pd.DataFrame({'filename': file_list_parasitized, 'label': labels_parasitized})
#Define generators for training, validation and also anomaly data
# Konfigurieren des ImageDataGenerator für das Rescaling der Pixelwerte
datagen = ImageDataGenerator(rescale=1./255)
# Erstellen eines ImageDataGenerator-Objekts, um Bilder und Labels zu laden, Klasse "df_data_train"
train_generator = datagen.flow_from_dataframe(
df_data_train,
src_path_train, # Verzeichnis, das die Bilder enthält
x_col='filename', # Name der Spalte im DataFrame, die die Dateinamen enthält
y_col='label', # Name der Spalte im DataFrame, die die Labels enthält
target_size=(SIZE, SIZE), # Größe der Eingabebilder
batch_size=batch_size, # Anzahl der Bilder pro Batch
class_mode='categorical', # 'categorical' für Klassifikation, 'binary' für binäre Klassifikation
shuffle=True
)
validation_generator = datagen.flow_from_dataframe(
df_data_test,
src_path_test,
x_col='filename',
y_col='label',
target_size=(SIZE, SIZE),
batch_size=batch_size,
class_mode='categorical',
shuffle=True
)
anomaly_generator = datagen.flow_from_dataframe(
df_data_parasitized,
src_path_parasitized,
x_col='filename',
y_col='label',
target_size=(SIZE, SIZE),
batch_size=batch_size,
class_mode='categorical',
shuffle=True
)
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment