"C:\\Users\\pgran\\AppData\\Local\\Temp\\ipykernel_8048\\2468543786.py:4: UserWarning: `Model.evaluate_generator` is deprecated and will be removed in a future version. Please use `Model.evaluate`, which supports generators.\n",
c:\Users\pgran\OneDrive - Hochschule Hannover\Semester 10\Einarbeitung\detecting_anomalies\.venv\lib\site-packages\keras\src\engine\training.py:3000: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')`.
saving_api.save_model(
%% Cell type:code id: tags:
``` python
# load weights into new model
model.load_weights("trained_modell.h5")
print("Loaded model from disk")
```
%% Output
Loaded model from disk
%% Cell type:code id: tags:
``` python
# Get all batches generated by the datagen and pick a batch for prediction
#Just to test the model.
data_batch=[]#Capture all training batches as a numpy array
img_num=0
whileimg_num<=train_generator.batch_index:#gets each generated batch of size batch_size
data=train_generator.next()
data_batch.append(data[0])
img_num=img_num+1
predicted=model.predict(data_batch[0])#Predict on the first batch of images
#Sanity check, view few images and corresponding reconstructions
print("Recon. error for the validation (normal) data is: ",validation_error)
print("Recon. error for the anomaly data is: ",anomaly_error)
```
%% Output
C:\Users\pgran\AppData\Local\Temp\ipykernel_8048\2468543786.py:3: UserWarning: `Model.evaluate_generator` is deprecated and will be removed in a future version. Please use `Model.evaluate`, which supports generators.
C:\Users\pgran\AppData\Local\Temp\ipykernel_8048\2468543786.py:4: UserWarning: `Model.evaluate_generator` is deprecated and will be removed in a future version. Please use `Model.evaluate`, which supports generators.